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The efficiency of the MB-RSPT in the calculations of the correlation contribu- 
tions to the interaction energies was investigated, using He2 as a model Van 
der Waals system. The attention has been focused on the convergency of the 
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the analysis of the fourth-order terms of MB-RSPT. The r61e of the renor- 
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I. Introduction 

The interaction energy between two ground state helium atoms has been investi- 
gated by ab initio calculations in numerous papers using both different basis sets 
and methods at different levels of accuracy. The very recent one, published by 
Silver [1], is the most closely related to the present work. Silver used the 
supermolecule approach, in which the interaction energy at a given internuclear 
distance r was defined as follows: 

AE(r) = E(He2, r) - 2E(He) (1) 

where E(He2, r) was the calculated energy of the He2 system at r and E(He)  was 
the calculated energy of an isolated atom. The energies E(He2, r) and E(He)  were 
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calculated [1] as a sum of the SCF contribution and correlation energies obtained 
from the second and third order Many-Body Perturbation Theory, using both 
"model"  reference Hamiltonian, that is the M011er-Plesset [2] partitioning of the 
Hamiltonian and "shifted" reference Hamiltonian [3], equivalent to the Epstein- 
Nesbet partitioning [4]. Only the former one achieves a proper distance depen- 
dence at large r for the He2 potential curve (see also the careful analysis of both 
partitionings by Malrieu and Spiegelmann [5]). In our work we have used the 
Many-Body Rayleigh-Schr6dinger Perturbation Theory (MB-RSPT) exclusively 
with the M011er-Plesset partitioning. We proceeded with the perturbation 
expansion up to the sixth order for double excitations, using the iterative 
procedure [6, 7], and investigated also quadruple excitations at the fourth order 
[8-13]. We believe that this approach enables deeper insight, complementary to 
that obtained by Silver, into the efficiency of MB-RSPT, using He2 as a model 
van der Waals system. Specifically, our attention has been focused to three main 
items: 

(i) Convergency of the perturbation expansion in the calculations of the interac- 
tion energy. 
(ii) Comparison of the simple dispersion energy with the second order "super- 
molecule" interaction energy and with higher order interaction energies. 
(iii) Detailed analysis of the fourth-order terms, namely the interrelation of the 
contributions which arise from the double excitations, quadruple excitations and 
the renormalization term. In this analysis we use the separation of contributions 
into the exclusion-principle violating (EPV) terms (more properly denoted as 
conjoint, CJ, terms) and non-EPV or disjoint (DJ) terms, described in our 
previous articles [11-13]. This last item is of special interest from the methodo- 
logical point of view, because the mentioned analysis allows precise comparison 
of the MB-RSPT up to the fourth order with other methods. 

The present work is not intended to compete in accuracy with previous ab initio 
calculations on the He2 system at least for two obvious reasons. First, we are going 
to use only a moderately extended basis set and, second, we will not take into 
account all possible types of excitations from the reference Hartree-Fock (HF) 
determinant. The most important is the omission of the triple excitations, and, 
consequently, the omission of the intra-inter-molecular correlation coupling [ 14], 
which is not negligible [14-17]. The extensive list of previous publications on the 
He. . .He interactions may be found in Silver's work [1] and in the recent book by 
Hobza and Zahradnik [17], where also the careful analysis of various theoretical 
approaches and their comparison with experiment is presented. 

2. The Outline of the Method 

The basic principles of MB-RSPT have been described in several excellent 
reviews [18-21]. We restrict ourselves here only to a short description of the 
notation and to several notes which are relevant for the interpretation of the 
present results. 



Interaction Energy Between Two Helium Atoms 311 

Double excitations in the second, third, fourth, and any higher order are denoted 
~(2) r.(3) E~) ,  l~,(4) as tzD, t~o ,  . . .  The fourth-order  term ~OR is the sum of contributions from 

quadruple excitations, E ~  ), represented by the non-EPV part of connected fourth 
order quadruple excitation diagrams and the uncancelled conjoint part of the 
renormalization term, E #  ) =  ( -E~)S)c j .  S is the renormalization factor of the 
first-order wave function. The remaining fourth-order contributions arise from 
single and triple excitations. As they both require additional integral transforma- 
tion and, moreover,  the triple excitations we are not able to calculate effectively 
at present, they will not be investigated. The notation for cumulative contribu- 
tions is obvious. For example, E~) ~4) =E~)+E~)+E(D4),  ~2)-~4) ~DQR ~--- 
E(D 2)-(4) -l-/.~ QR ,L'(4) and "-'DR~'(2)-(4) = L'D~(2)-(4)TZ~R-~(4), The fourth-order approximation to  

the configuration interaction with doubly excited configurations (CI-D) is the 
~,(2)-(4) E ~ )  1~'(2)-(4) =E(D 2)-(4) - E ~ ) S .  Note, that in ~CI-D not only is missed expression ~cx-D 

. ~(2)-(4) in comparison to t~DOR, but also the disjoint part of -E~S remains uncancelled. 
It should be stressed that just the proper  cancellation of the disjoint terms of the 
renormalization contribution and the disjoint terms of the fourth-order  discon- 
nected quadruple excitation diagrams together with the cancellation of all con- 
joint terms in all fourth order quadruple excitation diagrams [12] lead to the 
correct linear dependence of the fourth-order MB-RSPT energy on the number 
of electrons, N. This cancellation is equivalent to the statement that only con- 
nected diagrams are to be included in the fourth (and any higher) order of 
MB-RSPT [22]. Fulfilment of this requirement in the calculations of the interac- 
tion energy between two closed shell systems leads automatically to the correct 
behaviour of the interaction potential at large r, where, in our case, E(He2, r) 
should approach 2E(He)  i.e. AE(r-~ oc) = 0. This property has been referred to 
as "size consistency" [8, 10, 23, 24]. Both ordinary and MB-RSPT are size 
consistent, order by order, if in each order all contributions are taken into account. 
Starting from the fourth order this is not always the case, but even then, some 
energy expressions are size consistent, if they correspond to the connected 

~,(4) E(D2)-(4) ~,(2)-(4) diagrams. Obviously, E ~  ) and ~oR as well as and ~DOR are size 
~,(2)-(4) consistent, but EC~-D and its fourth-order approximation ,~c~-D are not. In 

calculations of the interaction energies by CI-D the size inconsistency is usually 
removed by the calculation of AE as a difference between the energy of the 
supersystem at the given distance and the energy of the supersystem at large (say 
50a0) distance. This approach, in addition to the fact that it is not strictly 
theoretically correct, has also practical disadvantage owing to the necessity of one 
additional calculation of the energy of the supersystem. Moreover,  the counter- 
poise correction is not easily defined in such an approach [25, 26]. 

An alternative way to overcome these difficulties is to include the small set of 
quadruple excitations in the CI expansion using the self-consistent electron pair 
method [27]. The correct dissociation may be obtained with localized, orthogonal 
natural orbitals. Unfortunately there is no clear answer to the question of how 
such optimum orbitals should be chosen [27]. 

Besides using the supermolecule approach we performed also calculations 
of the HF dispersion energy EDIsp. The method is based on the second-order 
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perturbation theory of intermolecular interactions [28] and allows accounting 
for only the intersystem correlation. We followed the procedure of Kochanski 
[29], using exclusively the M011er-Plesset partitioning. 

3. Results and Discussion 

In all calculations we have used the (6s2pld) Gaussian basis contracted to 
[4s2pld], with exponents of p-function 1.2 and 0.3 and complete set of d- 
functions with exponents 0.8 [30-32]. Energy contributions for the He atom are 
presented in Table 1. Interaction energies for five interatomic distances r are 
collected in Table 2. 

The  AEscF contributions show a shallow spurious minimum at 7a0. This was also 
the case in Silver's calculations with the Slater basis of similar quality. We 
corrected our SCF values by counterpoise correction [33, 34]. These contribu- 

A~CPC tions are denoted as ~ S C F .  

Obviously, double excitations represent the most important contribution to the 
correlation attraction. The dominant part of the effect is obtained already at 
the second order. This is in accord with other findings for He2 [1] and also for the 
(H2)2 dimer [35]. More specifically, our AE~ ) represents about 85% of the most 

A1~'(2)-(4) The only important correction to AE~ ) is the third sophisticated value, ~ D O R  �9 
order contribution AE~ ). Due to the cancellation of the negative AE~ ) and 

A ~,(4) A E,(4) positive ~.U_,QR , the total fourth order contribution z-~L~DQ R is very small. It is of 
a great practical importance that EDISP, which is relatively simple to calculate, 
does not differ from the higher order supermolecule calculations too much and 
thus provides quite good estimation of the correlation contribution to the interac- 
tion energy. The main part of the correction to EDISP comes from the third-order 
effect. 

Now let us comment on some approximations at the fourth-order  level. As is 
A r7(2)-(4) expected from the theory, both AE~ )-(4) and aCDOR lead to attractive interac- 

tion energies and approach zero with increasing r. In spite of this, using the 
AE(D 2) ~4) expression for the calculations of the interaction energies is not free of 
the methodological problems. In this expression the term E ~  ~ for the subsystems 
and both E ~  ~ and E ~  ~ for the supersystem are omitted. However,  the energy 
E ~  )-(4) is incorrect for two-electron systems. In this case, the fourth order 
renormalization term E ~  ~= ( - -E(D2)S)cJ  ~ (-E(D2)S) must be included together 
witlh E(D 4~ for the correct representation of double excitations. Fortunately, in the 
calculation of the interaction energy the simultaneous omission of both the above 
mentioned contributions, AE~ ~ and AE~ ~, does not matter. We can see from 

�9 ~ ( 4 )  A ~ ( 4 )  Table 2, that aZ~R is cancelled by AE~ ), so that ~ O R  is quite small and AE~ )-(4~ 
agrees with A E ~  ) quite well. The approximate cancellation between z~E~ ) and 
AE~ ) seems to resemble the cancellation between energy components E ~  ) and 
E ~  ) which is usual in larger molecules [12, 13]. We stress however that for the 
He2 supersystem the individual components E ~  ) and E ~  ) differ considerably 
(E~) = 49.8 x 10 5Eh, E(~ ) = -17 .5  x 10 5 Eh for interatomic distance r = 6ao). 
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Table 1. Energy components of the He atom (E/Eh) 

Energy component ~ 

ESCF - 2 . 8 6 1 1 1 6 5 7 0  

E ~  ) -0.0300858 
E(o 3) -0.0050156 
E ~  ) -0.0010586 
E~  ) -0.0002473 
E ~  ) -0.0000608 
E ~  ) = - E ~  ) S 0.0001609 
E ~  )-(4) - 0 . 0 3 6 1 6 0 0  

E(4) -0.0008977 DR 
E(2) (4) r..(2)-(4) - 0 . 0 3 5 9 9 9 1  CI-D ~ L~DR 

• ~(2)-(4) -2.8971157 ES C F T L, DR 

" For defiinitions see text. 

Table 2. Contributions to the interaction energy of the He...He system (energies in E/Eh • 10 -5, 
interatomic distances in r/ao) 

Interaction r 
energy 
contribution" 5.0 5.5 6.0 7.0 10.0 

A E s c  F 11.93 3.25 0.65 -0.18 0.00 
AE cec SCF 12.41 3.65 1.06 0.09 0.00 
EDISP -7.72 -4.30 -2.51 -0.97 -0.11 
&E~ ) -8.02 -4.53 -2.66 - 1.01 -0.11 
AE~ ) -1.08 -0.69 -0 .44 -0.18 -0.02 
AE~ ) -0.17 -0.13 -0.09 -0.04 0.00 
AE~ ~ -0.02 -0.02 -0.02 -0.01 0.00 
AE~ ) -0.001 -0.004 -0.004 -0.001 0.000 
A(-E(~)S) 32.38 32.31 32.26 32.22 32.19 

(4) AEoR 0.23 0.13 0.07 0.03 0.00 
AE~ ) 17.66 17.60 17.58 17.55 17.53 
AE(D 2)-(4) -9.28 -5.35 -3.19 -1.23 -0.13 
A ~(2)-(4) 23.10 26.95 29.07 30.99 32.06 ~t~ CI_ D 
A r2~ (2)-(4) 

E" CI-D . . . . . .  -9.09 -5.24 -3.11 -1.20 -0.13 
~ rv(2)-(4) 8.38 12.25 14.39 16.32 17.40 ~'DR 
AE~ ) -17.43 -17.47 -17.51 -17.53 -17.53 

(4) 
A E D Q  R 0.05 0.00 --0.01 --0.01 0.00 
A ~c7(2)-(4) ~DOR -9.05 -5.23 -3.12 - 1.20 -0.13 
AE~s~C • A~(2)-(4) T ~aL, DO R 3.36 --1.58 --2.06 --1.11 -0.13 

cPc AEscF + EDISP 4.69 --0.65 --1.45 --0.88 --0.11 

For definitions see text. 

I t  is f a i r  t o  n o t e  t h a t  u s i n g  A E ~  )-(4) f o r  c a l c u l a t i o n s  of  t h e  i n t e r a c t i o n  e n e r g i e s  is 

n o t  a l w a y s  s a t i s f a c t o r y .  F o r  e x a m p l e ,  in  Be2  d i m e r  (wi th  n e a r  d e g e n e r a t e  2 s  a n d  

2 p  o r b i t a l s )  t h e  i n c l u s i o n  of  o n l y  d o u b l e  e x c i t a t i o n s  l e a d s  to  t h e  s p u r i o u s  l oca l  

m i n i m u m  at  s h o r t  d i s t a n c e s  [10 ,  36] .  T h i s  m i n i m u m  m a y  b e  r e m o v e d  b y  t h e  

i n c l u s i o n  of  q u a d r u p l e  e x c i t a t i o n s  a n d  t h e  r e n o r m a l i z a t i o n  t e r m  [10 ,  36] .  I t  is 
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interesting that, owing to the unsatisfactory cancellation between AE(R 4) and 
AE~J ~, better results for Be2 are obtained by AEcI_D than by AE~ )-(4~, although 
CI-D is not size-consistent [26]. 

Finally, let us comment on the AIG'(2)-(4) and A~(a)-(4) ~.a.L, DR a.aL;CI_ D potential curves. They both 
contain the renormalization term AE(R 4~ but not AE~ ), and they both provide 

A 1u,(2)-(4) repulsive interaction energy and incorrect long-range behaviour. With ~ C I - D  , 
which contains the uncancelled A(-E~)S)Dj contribution, this behaviour is not 

1G,(2)-(4) unexpected. However,  .I..;DR is generally correctly N-dependent ,  so that the 
failure of this energy deserves more careful analysis. We will follow essentially 
the ideas of Bartlett and Purvis [10, 37]. The starting point is the fact that the 
contribution E(R 4~ " ~(4) m IZDR for the supersystem is obtained from the separation of 

L7(4) the ~QR term into E ~  ) and E ~  ~ components and that this separation is not 
invariant to a unitary transformation among degenerate orbitals. With symmetry 
adapted orbitals of He2, the E ~  ) value of the supersystem at large interatomic 
distance is about three (instead of two) times larger then E ~  ) for the isolated 
atom: 

E ~  ~ (He2) ~ 3E~  ) (He). (2) 

The factor of three follows from the fact that 

2E(4)/He a E ~4) /He ~ -E(4 ) /He  ~+E(4)(He2) R k ) ~ Q R k  2 ] -  Q ~, 2)  R (3) 

and, from the result of our calculation, that E(R4)(He2)~-3E~)(He2). After 
localization of molecular orbitals of the supersystem, however, we cannot talk 
about quadruple excitations, which are simultaneous but independent excitations 
of two electron pairs (just this type of excitations is currently included in the 
fourth-order  MB-RSPT). Instead, these must be viewed as separate double 
excitations on individual subsystems. Thus, the contribution from E ~  )(He2) in 
Eq. (3) will be absorbed into E ~  ) (He2) after localization. Then we obtain a correct 

EQR (He2) = factor of two in Eq. (2). In other words, with localized orbitals ~4) 
A ~.,(4) E ~  ) (He2)= 2E~  ) (He), AE~ ) would be zero and '~'~DR would be equivalent to 

A E.,(4) 
~L, D Q R .  

At this point it is appropriate to mention the supermolecule calculations with the 
Epstein-Nesbet  partitioning. With such a partitioning using canonical orbitals 
one obtains a repulsion between two helium atoms at the second (and also at the 
third) order [1, 5, 38] as a consequence of destroyed balance between diagonal 
contributions, which are investigated via the Hamiltonian shift, and the non- 
diagonal ones, which are not [1]. As the summation of diagonal ladders includes 
in some respect also the summation of certain conjoint contributions of the 
renormalization term through higher orders of MB-RSPT, without investigation 
of higher excitations, we can find the connection between the failure of the 

A 1G,(2)-(4) Epstein-Nesbet  calculations and the a.aZ2.DR calculations discussed previously. 
Accordingly, using the localized orbitals one can obtain the correct interaction 
potential also by the second-order calculations with the Epstein-Nesbet  partition- 
ing [5]. 
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A r7(2) - (4)  The discussion of the incorrect behaviour of the aLzC~-D interaction potential 
need not be very lengthy. It is well known that this energy contains not only the 
previously discussed (-E(D2)S)cj term, but also the (--E(D2)S)Dj term, so that it is 
size-inconsistent. The total (-E(2D)S) term of the supersystem is four times as 
large as that for the subsystem and must be removed from AE, supermolecule 
calculations of the interaction energies, we obtained our corrected values 
A 1E,(2)-(4) 

J-~CI-D, corr  a s  a difference 

AE (2)-(4) = AE(D 2)-(4) + [(-E~)S)(He2,  r) - ( -E~)S)(He2,  r = 50ao)]. (4) CI-D,  corr  

A 1~,(2)-(4) The results are in very good agreement with , ~ D O R .  

4. Some Comparisons with Other Works 

(i) For the near-equilibrium interatomic distance of 6ao we obtained with 
AECPC A 12r (2)-(4)  SCF +'-'~DOR only about 60% of the experimental [39] or more accurate ab 
initio [40, 41] van der Waals interaction energy. Such an underestimation of the 
interaction energy follows immediately from the underestimation of the polariza- 
bility of the He atom with our basis: it is only about 84% of the experimental one 
[31]. Silver obtained, with AE~ )-(3) in a Slater basis, a much larger interaction 
energy than was obtained in the present paper, --5.4Eh at 6ao. However,  this 
interaction energy is greatly overestimated, probably owing to t heg rea t  super- 
position error. 
(ii) The difference between two second order quantities, the supersystem interac- 
tion energy AE~ ) and the dispersion energy EDISP, is negative for all internuclear 
distances. This difference is connected with the fact, that besides the intersystem 
correlation energy some additional contributions are taken into account in AE~ ), 
but not in EDtsp. Namely, it is the change in the intrasystem correlation energy 
and the effects connected with the overlap between orbitals of individual sub- 
systems. For a more detailed discussion of these points see, e.g., Refs. 
[14, 17, 41, 42]. Since in the supersystem calculations we used canonical orbitals, 
it is not possible to evaluate the change in the intrasystem correlation energy 
separately. From the variational calculations of the Liu and McLean [15] (see 
also the discussion of Hobza and Zahradnik [17], it follows that this quantity is 
positive at the van der Waals minimum and interatomic distances less then 6ao, 
and it is negative at larger distances. On the other hand, perturbation calculations 
[41] lead to the negative value of -0 .9  x 10 -5 Eh at r = 5.6ao. It should be stressed, 
however, that the relation between the supermolecule variational and perturba- 
tional definitions of the change of the intramolecular correlation energy is not 
straightforward [41]. The most closely related to our calculation is the comparison 
of AEcI-SD and EDISt" by Jaszunski et al. [43] for H2"-H2. They found EDISP 
slightly more attractive than AEcI-SD calculated as EcI-SD (H2""H2, r)-- 
ECI-SD (HE" "H2, r = 100a0), in contrast to our case. Of course, with our basis, 
which is not sufficiently extended, the results of the supermolecule calculations 
may be obscured by the snperposition error. Really, after applying the counter- 
poise correction to AE(D 2) at 6a0, we obtained almost exactly AE~ ) =EDIsP, 
although, in fact, the superposition error was not too large. 
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(iii) T h e  re la t ive  i m p o r t a n c e  of the  i n d i v i d u a l  c o n t r i b u t i o n s  in the  p e r t u r b a t i o n  

e x p a n s i o n  m a y  be  also i n f l u e n c e d  by  the  basis  set.  W e  o b t a i n e d  s o m e  e x p e r i e n c e  
in this  r e spec t  in the  ca l cu la t ions  of t e n - e l e c t r o n  hyd r ide s  [12] a n d  d i a t o m i c  

m o l e c u l e s  [13]. In  the  c i ted wo rk s  we have  f o u n d  tha t  the  ca l cu l a t ed  va lues  of 
~,(2)-(4) 

t he  c o n t r i b u t i o n s  to ~DOR m a y  vary  wi th  the  basis  set  c o n s i d e r a b l y ,  b u t  the  
ove ra l l  p i c tu re  of the i r  r e l a t ive  i m p o r t a n c e  is no t  too  m u c h  basis  set  d e p e n d e n t .  

W e  be l i eve  that  this  is va l id  also in ca l cu l a t i ons  of e n e r g y  d i f ferences .  

Acknowledgement. T h e  ca lcu la t ions  were  ca r r i ed  ou t  o n  the  S i e m e n s  4 0 0 4  
c o m p u t e r  at t he  C o m p u t e r  C e n t e r  of C o m e n i u s  U n i v e r s i t y  in Bra t i s lava .  T h e  
c o m p u t e r  t i m e  is g ra te fu l ly  a c k n o w l e d g e d .  
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